Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dilovan S. Cati and Helen Stoeckli-Evans*

Institut de Chimie, Université de Neuchâtel, Av. de Bellevaux 51, CP 2, CH-2007 Neuchâtel, Switzerland

Correspondence e-mail:
helen.stoeckli-evans@unine.ch

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
$w R$ factor $=0.079$
Data-to-parameter ratio $=10.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

An orthorhombic polymorph of N, N^{\prime}-bis(2-pyridylmethyl)pyrazine-2,3-dicarboxamide

The title compound, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2}$, can be crystallized in two polymorphic forms, viz. orthorhombic, described here, and triclinic. In the orthorhombic polymorph, both 2-pyridylmethyl moieties lie out of the plane of the pyrazine ring by $c a$ 80°. One amide moiety lies in the plane of the pyrazine ring, while the other is almost perpendicular to the pyrazine ring. This structure contrasts with that of the triclinic polymorph, which is L-shaped, with one of the (2-pyridylmethyl)amide substituents lying almost in the plane of the pyrazine ring because of the presence of a bifurcated ($\mathrm{N}-\mathrm{H} \cdots \mathrm{N}^{\prime} \mathrm{N}^{\prime}$) intramolecular hydrogen bond.

Comment

The title compound, (I), has been synthesized in order to study its coordination behaviour with first-row transition metals. Recently, the structures of both copper(II) (Hausmann et al., 2003; Cati et al., 2004) and nickel(II) (Cati et al., 2004) [2×2] grids have been described. Cati et al. (2004) also described the synthesis of (I) and the structure of its triclinic polymorph.

(I)

The molecular structure of the orthorhombic polymorph of (I) is illustrated in Fig. 1. The bond distances and angles are normal for such compounds (see Table 1). In the triclinic polymorph (Cati et al., 2004), the molecule is L-shaped, with a bifurcated intramolecular hydrogen bond maintaining one pyridine ring relatively coplanar with the amide group and the pyrazine ring (Fig. 2). In the orthorhombic polymorph, there is no such intramolecular hydrogen bond and the molecule is more V-shaped, as shown in Fig. 1. One amide moiety (N3 and

Figure 1

View of the orthorhombic polymorph of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

Received 19 December 2003
Accepted 5 January 2004
Online 17 January 2004

Figure 2

View of the intra- and intermolecular hydrogen bonding (dashed lines) in the triclinic polymorph of the title compound (Cati et al., 2004).

O1) lies almost in the plane of the pyrazine ring [7.0 (1) ${ }^{\circ}$, with a short $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{~N} 1$ distance (see Table 2), while the other (N 5 and O 2) is almost perpendicular [84.5 (1) ${ }^{\circ}$] to the pyrazine ring. Selected dihedral angles involving the pyrazine and pyridine rings in the two polymorphs are listed in Table 3.

In the crystal structure, the molecules are linked by a number of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a three-dimensional network (Table 2 and Fig. 3). This structure contrasts with that of the triclinic polymorph, where a relatively strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond links molecules to form a hydrogen-bonded polymer (Fig. 2).

Experimental

The synthesis of and analytical details concerning the title compound have been described elsewhere (Cati et al., 2004). Large colourless crystals of the orthorhombic polymorph were obtained by slow evaporation of an acetonitrile solution. Crystals of the triclinic polymorph were obtained from a solution of ethyl acetate and dichloromethane (50:3).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2}$
$M_{r}=348.37$
Orthorhombic, Pbca
$a=8.5131$ (6) \AA
$b=31.862$ (2) A
$c=12.1757$ (6) \AA
$V=3302.6$ (4) \AA^{3}
$Z=8$
$D_{x}=1.401 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: none 18389 measured reflections 3034 independent reflections 2456 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)=0.032\right.$
$w R\left(F^{2}\right)=0.079$
$S=1.03$
3034 reflections
300 parameters
All H -atom parameters refined

Mo $K \alpha$ radiation
Cell parameters from 15934 reflections
$\theta=1.3-25.6^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=153 \mathrm{~K}$
Block, colourless
$0.50 \times 0.50 \times 0.40 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.045 \\
& \theta_{\max }=25.5^{\circ} \\
& h=-10 \rightarrow 7 \\
& k=-38 \rightarrow 38 \\
& l=-14 \rightarrow 14
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0478 P)^{2}\right. \\
& \quad \quad+0.1168 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.0087(9)
\end{aligned}
$$

Molecular packing of the orthorhombic polymorph, viewed down the c axis. Hydrogen bonds are indicated by dashed lines.

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

O1-C5	$1.2299(15)$	N3-C6	$1.4466(17)$
O2-C12	$1.2265(16)$	N4-C7	$1.3337(18)$
N1-C1	$1.3408(16)$	N4-C11	$1.3409(17)$
N1-C4	$1.3298(18)$	N5-C12	$1.3363(16)$
N2-C2	$1.3407(17)$	N5-C13	$1.4647(17)$
N2-C3	$1.3358(19)$	N6-C14	$1.3389(14)$
N3-C5	$1.3297(16)$	N6-C18	$1.3453(17)$
C1-N1-C4	$116.68(11)$	O1-C5-C1	$120.52(11)$
C2-N2-C3	$116.20(11)$	N3-C5-C1	$115.09(11)$
C5-N3-C6	$122.59(11)$	N3-C6-C7	$112.94(11)$
C7-N4-C11	$117.46(13)$	N4-C7-C8	$122.33(12)$
C12-N5-C13	$119.41(11)$	N4-C7-C6	$117.40(12)$
C14-N6-C18	$117.17(11)$	N4-C11-C10	$123.87(16)$
N1-C1-C5	$117.61(11)$	O2-C12-C2	$120.46(11)$
N1-C1-C2	$121.28(11)$	N5-C12-C2	$114.68(11)$
N2-C2-C12	$114.71(11)$	O2-C12-N5	$124.74(12)$
N2-C2-C1	$121.76(11)$	N5-C13-C14	$113.65(11)$
N2-C3-C4	$122.04(13)$	N6-C14-C13	$115.99(11)$
N1-C4-C3	$121.99(13)$	N6-C14-C15	$122.34(11)$
O1-C5-N3	$124.38(12)$	N6-C18-C17	$123.91(12)$

Table 2
Hydrogen-bonding geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{~N} 1$	$0.896(17)$	$2.267(17)$	$2.6921(16)$	$108.7(13)$
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{~N}^{\mathrm{i}}$	$0.896(17)$	$2.547(17)$	$3.2785(16)$	$139.2(14)$
$\mathrm{N} 5-\mathrm{H} 5 \mathrm{~N} \cdots \mathrm{~N}^{\mathrm{ii}}$	$0.928(16)$	$2.122(16)$	$3.0493(16)$	$178.3(13)$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} \mathrm{i}^{\mathrm{iii}}$	$0.980(19)$	$2.378(19)$	$3.3178(18)$	$160.5(14)$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.972(17)$	$2.505(16)$	$3.1855(17)$	$127.0(11)$
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{O} 1$	$1.021(15)$	$2.437(15)$	$2.8114(16)$	$100.7(9)$
${\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 2^{\mathrm{iv}}}^{2}$	$1.013(16)$	$2.509(16)$	$3.4749(17)$	$159.2(13)$

Symmetry codes: (i) $x-\frac{1}{2}, y, \frac{3}{2}-z$; (ii) $1-x,-y, 1-z$; (iii) $x-\frac{1}{2}, y, \frac{1}{2}-z$; (iv) $x, \frac{1}{2}-y, \frac{1}{2}+z$.

Table 3
Dihedral angles (${ }^{\circ}$) between various aromatic rings in the orthorhombic and triclinic polymorphs of (I); plane A is the pyrazine ring, plane B is the pyridine ring containing N 4 and plane C is the pyridine ring containing N6.

Orthorhombic polymorph		Triclinic polymorph	
Plane-plane	Angle	Plane-plane	Angle
$A-B$	81.5 (1)	$A-B$	17.8 (2)
$A-C$	80.7 (1)	$A-C$	60.5 (2)
$B-C$	25.1 (1)	$B-C$	74.1 (2)

H atoms were located in Fourier difference maps and refined freely $[\mathrm{C}-\mathrm{H}=0.942$ (18) -1.021 (15) \AA and $\mathrm{N}-\mathrm{H}=0.896$ (17) and 0.928 (16) Å].

organic papers

Data collection: X-AREA (Stoe \& Cie, 2003); cell refinement: X AREA; data reduction: X-RED32 (Stoe \& Cie, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97.

Financial support from the Swiss National Science Foundation is gratefully acknowledged.

References

Cati, D. S., Ribas, J., Ribas-Ariño, J. \& Stoeckli-Evans, H. (2004). Inorg. Chem. In the press.
Hausmann, J., Jameson, G. B. \& Brooker, S. (2003). Chem. Commun. pp. 29922993.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (2003). X-AREA (Version 2.1) and X-RED32 (Version 1.05). Stoe IPDS Software. Stoe \& Cie GmbH, Darmstadt, Germany.

